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SIMILARITY PARAMETERS FOR RADIATIVE ENERGY TRANSFER

IN ISOTHERMAL AND NON-ISOTHERMAL GAS MIXTURES

by

S. S. Pennert M. Thomastt and G. Adomeit't

Karman Laboratory of Fluid Mechanics and Jet Propulsion
Daniel and Florence Guggenheim Jet Propulsion Center

California Institute of Technology
Pasadena, California

ABSTRACT

The similarity groups for multicomponent, reacting
gas mixtures with radiative energy transport are derived
(Section I). The resulting relations are used to consider
the feasibility of scaling for flow processes with radiative
energy transport under highly simplified conditions
(Sections II and III). Next the scaling parameters are
derived for radiant energy emission from isobaric and
isothermal gases for arbitrary opacities and various
spectral line and molecular band models (Section IV).
Scaling parameters for radiant energy emission from
isobaric but non-isothermal systems are discussed for
arbitrary opacities and various spectral line and molecular
band models under the restrictions imposed on the allowed
temperature profiles for dispersion and Doppler lines by
the Eddington -Barbier approximation (Section V). Finally,
we consider the radiative scaling properties for represen-
tative temperature profiles for both collision-broadened
and Doppler-broadened line profiles on the basis of exact
numerical calculations that we have performed for a
rotational spectral line belonging to a molecular vibration-
rotation band (Section VI). It appears that simple scaling
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rules generally constitute a fair approximation for
dispersion lines in non-isothermal systems but that
corresponding relations apply to lines with Doppler
contour only in the transparent gas regime.

I. DETERMINATION OF SIMILAIITY PARAMETERS

The techniques for identifying the similarity groups for systems

described by a set of conservation equations are well known and have

been developed in detail previously for reacting, multicomponent gas

1
mixtures. Although the particular form of the conservation equations

used in the original analysis has been shown to be in error in several
2,3

respects, the resulting similarity groups are unchanged if the same
I

approximations are used as in the original article. Some generali-

zation of procedure can be made without difficulty by following the method

described below [Eqs. (4) and (6) are not given in ref. I]

We start with the set of conservation equations [see Eqs. (12),

(13). (16) to (18), and (23) in Chapter XVIII of i] : next we use a binary

mixture approximation for each of the diffusion velocities I using Eq. (4)

on p. Z43 of I, replace the subscript 1 by K (K=l, 2 .... n) for an n-

component mixture, replace Y. by 1-YK and WZ by W= average molecular

I S.S. Penner, Combustion Researches and Reviews 1955, pp. 140-162,

Butterworths Scientific Publications, London 1956.
2 For a derivation of the relevant equations from continuum theory, see

W. Nachbar, F.A. Williams and S.S. Penner, Quart. Appl. Math. 17,

43 (1959).
The correct results are also given by S.S. Penner, Chemistry

Problems in Jet Propulsion, Pergamon Press, Ltd. , London 1957.

This book will be referred to as I hereafter.
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weight of the fluid mixture remaining without species K] ; finally we

write the complete heat fidix vector [see Eq. (23) on p. 239 of I] in the

form4

q = - [A+ Ach] VT.

Here A is the thermal conductivity associated with molecular collisions

and A ch identifies the thermal conductivity associated with chemical

reaction; A ch is given explicitly by the expression4

n n dX K ,

Ach o DKKI'WK'HKcT

K=l K'=l

where (c) = total number of moles per unit volume of mixture, f ; fluid

density, DKK, = multicomponent diffusion coefficient which is a known

function of the binary diffusion coefficients and the mixture composition,

W K molecular weight of species K', HK = molar enthalpy of species K,

XK = mole fraction of species K', T = temperature.

Using the specified starting relations and standard procedures,

we find the following set of similarity parameters for multicomponent,

reacting gas mixtures without radiative energy transport if the subscript

o identifies sutitably chosen reference conditions:

Y = ratio of specific heat at constant pressure (- ) to the (1)

specific heat at constant volume (T °) for the fluid

mixtur e,

4J.O. Hirschfelder, University of Wisconsin Report WIS-ONR-18,

February 6, 1956; J.N. Butler and R.S. Brokaw, J. Chem. Phys. 26,

1636 (1957).
5J.0. Hirschfelder, C.F. Curtiss and R.B. Bird, Molecular Theor

of Gases and Liquids, John Wiley and Sons, Inc., New York 1954.
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Reynolds numbers a Pei = bvoLi/,o (0 density, v = flow (2)

velocity, Li = ith characteristic length, A = mixture

viscosity; i 1,2, ... 1).

Schmidt numbers a Sc K = Ao/ foDK, o (DKo diffusion (3)

coefficients for species K; K = 1,2 .... n),

ScK I' 0oI okTKoDKo (kTK = thermal diffusion ratio for (4)

species K, D = k D thermal diffusion
TK, o TK, o K,o0

coefficient for species K),

Prandtl number a Pr = c U A , (5)po 0 0

Pr' 1 po/A (this group will actually remain invariant (6)
po o ch, o

if the groups Pr, ScK and DIII, i,r are fixed),

Mach number a M = /rp (p = pressure), (7)

Froude numbers m v0 /gLi (g = gravitational acceleration), (8)

Damkdhler's first similarity groups -a D ,i,r L. U r,o/Vo (9)

(Ur,o = characteristic reaction frequency for the rth

chemical process; r = 1, 2. m),

Damkohler's third similarity groups z D r= r,o L U /V o T T

(q ' = heat release per unit mass in the rth chemical reaction),
r (10)

1 2-¢ -Z IoI(Cp oI 1 )

6
A. Radiative Energy Transport in the Diffusion Approximation

Throughout the following discussion we neglect photochemical

6 For an elementary discussion of the basic equations, see S.S. Penner

and R. W. Patch, "Radiative Transfer Studies and Opacity Calculations
for Heated Gases", Technical Report No. 6, Contract AF 49(638)-984,

California Institute of Technology, Pasadena, Calif. , January 1962; in
press in Papers Presented in Honor of Modesto Panetti, Politecnico di
Torino, Accademia Nazionale dei Lincei, Rome, Italy, 1962.
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reactions. In the diffusion approximation, the effective thermal

conductivity is augmented by the term t ra where

a =16 CT 3 /3kL, Ro

7 = Stefan-Boltzmann constant and kL, Ro = Rosseland mean absorption

coefficient. Hence an additional analogue of the Prandtl number will

appear, viz.,

Pr =c po/Ara (12)
Poo o ra, o

In the momentum equation, an additional body force per unit

volume

r = -(16 WT3/3c)7Tra

appears, where c = velocity of light. This body force per unit volume

may be considered as an additive term to the pressure gradient, i.e.,

the fluid pressure is replaced by the sum of the fluid and radiation

pressures. Thus a new similarity group may be formed which

measures essentially the ratio of these pressures. It may be written as

16 0rT 4 oM2 (4CTo 4 /c)
3CPo 'f o" I ~z)

The ratio of the radiant energy density for a blackbody at the reference

temperature T (=47T o4/c) to the translational energy density under

reference conditions (=oVo2 /2) we designate as the similarity group

(4T °4/c) (1

Pv /2

The preceding considerations indicate that, in the diffusion

approximations, allowance for radiative energy transfer leads to the
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requirement that an additional analogue to the Prandtl number [ see

Eq. (12)1 and the similarity group •t be considered. The reciprocal

of the Rosseland mean absorption coefficient is the Rosseland mean

free path IRo and is defined by the relation

-l 15 1 ex hv
Ro L,Ro =ll i T V -7-x-dx, x

4w 0 L, , T (e -1)

where kL, V, T identifies the linear absorption coefficient in the

frequency interval between V and v + dv at the temperature T. Thus

constancy of the similarity group Pr imposes severe restrictions on

the allowed values of kL, , T although it is not required that the products

of the linear spectral absorption coefficients and characteristic lengths

be maintained invariant, as is necessary for radiative transfer problems

for arbitrary opacities (see Section IC) in isothermal systems.

B. Radiative Energy Transport for Transparent Gases

The radiation pressure for transparent gases without external

source is negligibly small. For isothermal systems, the energy loss
.6

from unit volume by radiation is

v. Fra = 4rTT' L, PI

where KL, PI is the Planck mean absorption coefficient which equals

the spectral emissivity per unit length. The term V. Fra occurs as

an additional term to the internal energy flow rate per unit volume

v . Vu

where u represents the specific internal energy. Hence we may

construct the ratio
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L I=4Y 0 L,P ~ L. PI

f9v. Vu*v0pFv. Vu

where the starred quantities are dimensionless. The parameters

~To4IL L. -

r T PI,o 1 (14)f oo p, 0CPoTo0

measure the ratio of radiative energy loss from the system per unit

surface area to the free stream rate of enthalpy transport per unit

area. The parameter r'i plays an important role in problems on

stellar turbulence.

Other important similarity groups in flows with radiant

energy transfer are the Bouguer numbers

Bui,i N kL,V, T,o L (15)

or
BuPl,i= i L, PI, oLi (Ia)

or
BuRo,i L, RoLi (Iib)

and the Boltzmann number

C'T3
0T

Bo= o (16)

foV 0 po

The Boltzmann number is seen to arise from the similarity group r'
by dividing this quantity by the ith Bouguer number Bu PI, i

7 A. Unsold, Physik der Sternatmosphiren, Julius Springer, Berlin 1958.
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C. Radiative Energy Transport for Arbitrary Opacities

When neither the diffusion approximation nor the transparent

gas approximation are applicable, proper allowance for radiative energy

transport becomes particularly difficult since local radiant energy

contributions are determined by integrals over the accessible field of

view. Neglecting photochemical processes, it appears now that

complete simulation is possible, even for isothermal systems, only

if a set of similarity groups involving the parameters Bu, i remains

invariant for all important lengths Li at all frequencde s V . For non-

isothermal systems, the problem becomes complicated still further

because simulation now requires invariance of similarity groups

involving the spectral radiant flux per unit solid angle at x1 with the

solid angle measured (see Fig. 1) in the direction (12-it)/ I X 2 x 1

i.e., along C, viz.,

00 x 2

L.2 vT('2)]. exp- [kL, T(4)] dx dx2

S1, C Xl, C

where the symbol C indicates that integration is to be performed

along the path defined by a straight line drawn between the ends of

(initially chosen) vectors x2 and x . Here the scalar spectral black-

body radiancy R0  and the scalar linear spectral absorption coefficientsV,0

are, in general, complicated functions of the spacial location.

This important problem is considered in detail in Section IV for iso-
thermal emitters and in Section V for non-isothermal systems.
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XI

Fig. 1. Schematic diagram showing the definitions of

x X2 8 and C

II. SCALING OF FLOW WITH MAINTENANCE OF CONSTANT VALUES

OF DI, i, r AND ri FOR TRANSPARENT GASES

An interesting special case, which is of some practical

importance, involves the scaling of reactive gas flows for a given

chemical system in such a way that the reference temperature, velocity

and specific heats are invariant.

Let us identify by the subscripts H and Mo a large-scale burner

and the model, respectively. It follows then from Eqs. (9) and (14) that

Li;HUr,o;H = Li;MoUr o;Mo
Vo;H Vo;Mo

and

T o, o3 o;Hci;H f-o;Mo3o;Mo ip,o;Mo
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Let

"o: (17)

denote the scaling parameter for the physical variable VJ.. Furthermore,

let us consider two propellant st reams that are injected at the same

reference conditions with

n =n. =n_ =n .
v c T

p

The specified requirements for similarity now reduce to the relations

n L.n -l(8nL. nU =-(8
i rand

n n.=n . (19)
KL. P1

Since a -1
r

nU s nr (20)
Ur7

if e represents the overall order of the rth chemical process, we may

rewrite Eq. (18) in the form
i-e

nLi =nf r (21)

Therefore, the similarity groups DIi,r will remain invariant if model

tests are performed on small-scale engines at elevated density since 8 r

will generally be larger than unity. For example, for second-order

processes (6r=2), nL.=IO if the model tests are performed on a scaled-
1

down burner in which all lengths have been reduced by a factor of 10. At

19r -1 - I
the same time, nT = n ?l= 10 if n -10, i.e., if model tests have

been carried out at densities ten times larger than those which are of

interest for the full-scale device.
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Combining Eqs. (19) and (ZI) we find that

1r
n_ k n P

L, Pl

whence it follows that simultaneous similarity with respect to the groups
D I and r'. can be maintained only for first-order processes since
DI,i,r 2

we expect, in general, that n i nc n To summarize, it is not

L, P1
possible to maintain simultaneously similarity in model tests and in

large-scale burners with respect to the important similarity groups

D1,i,r and ri except in the unrealistic case that the effective, overall

reaction order is unity.

III SCALING OF FLOW WITH MAINTENANCE OF CONSTANT VALUES

OF D1, i, AND Bu pi FOP TRANSPAPENT GASES

The scaling procedures discussed in the preceding Section II

were designed to assure similarity of chemical reaction profiles and of

radiative energy loss rate per unit area relative to the convective energy

transport rate per unit area. Thus they were designed to maintain the

flow field in a reacting system invariant under the influence of radiant

energy loss.

For some applications it may be more important to require

invariance of the chemical composition profile and of the absolute value

of the radiant energy emission rate per unit area of reaction front since

the occurrence of radiant energy loss generally constitutes only a small

perturbation on the flow field. In this case, it is pertinent to demand

invariance of the Bouguer numbers Bupi as well as of Dii,r.
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In order to assure invariance of Bupl' i, we impose the condition

1WL, Pl, o:H Li;W•L. Pl, o;MoLi; Mo

or orn L. =1. (22)

VL, P 1

Equations (18) and (21) apply as before for nv=l. If we combine Eqs. (21)

and (22) we obtain the result
e -l

rn = n
•L, P1

i. e., the condition
n ZLP= n•

•L, P1

is now only satisfied for effective, overall, second-order processes.

To summarise, simultaneous invariance of the similarity groups D1 1, r

and BuPl.i is possible only for the important case of second-order,

overall rate processes. For this case, the groups Bei and M are also

maintained invariant for a given combustible mixture.

The foregoing considerations lead to the important conclusion

that significant model testing of the radiative properties of reacting gas

flows is possible for those cases in which radiant energy emission does

not produce significant perturbations in the flow field (e. g., transparent

gases) provided we are satisfied in scaling the radiative properties per

unit area of reacting mixture. The correlated changes in geometrical

specifications (Li) and operating density ( are determined through

Eq. (21) for nv =nc =nT
p
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IV. SCALING PARAMETERS FOR RADIANT ENERGY EMISSION FROM

ISOBARIC AND ISOTHERMAL SYSTEMS FOR ARBITRARY OPACITIES

AND VARIOUS SPECTRAL LINE AND MOLECULAR BAND MODELS

For isothermal systems at the temperature T, the emitted

steradiancy may be calculated from the equation

B(T)= fR*[l-exp(-P.X)] dw

The results of these calculations are summarized in Table I& for selected

spectral line shapes and in Table lb for selected vibration-rotation band

models.

From the data listed in Tables la and lb, we may draw the

following important conclusions:

1. For transparent games, the steradiancy is directly proportional

to p L irrespective of the spectral line contour or of the band

model.

2. The important scaling parameter is p L at all optical depths for

isolated Doppler-broadened lines, and for all band models in

which the spectral line structure is effectively smeared out.

3. The steradiancy is proportional to V ?2L at moderate to

large optical depths (a) for isolated, collision-broadened

lines, (b) for isolated lines with combined collision and

Doppler broadening falling in the "square-root region" of

the curves of growth. Also for statistical distributions of

the lines described under (a) and (b) VfiL is the

important scaling parameter.
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V. SCALING PARAMETERS FOR RADIANT ENERGY EMISSION

FROM ISOBARIC BUT NON-ISOTHERMAL SYSTEMS FOR

ARBITRARY OPACITIES AND VARIOUS SPECTRAL LINE

AND MOLECULAR BAND MODELS

One of the classical approaches to the theoretical calculation

of radiant energy emission from non-isothermal systems is exemplified

by the Lundblad series development for the solar photosphere. 
7

The spectral steradiancy at the frequency v and at the optical

depth Tv,, =0, corresponding to the geometrical length s = 0, in the

direction 0' (see Fig. 2), is given by the relation

OD

B9 (0,Q'1) B f ex[,reo (9se c 0)dt9

0

=f B 0(s)L[exp[~ kL (a )do'J kL()do (23)
0 0

where B° is the blackbody steradiancy for local thermodynamic
V

equilibrium at the optical depth tr, =coo 0'[ kL,V (@')ds' corresponding
0

to the geometric length s, along the beam of the emitting system, for

a spectral linear absorption coefficient k,, = kL,.

If B;('v) is developed in a (Lundblad) power series in *r,

viz., CD

BV(TV) = ai J, (24)

i=0
then

000O 00

B 9 (0,01) a' aicoo1i J yie'Yd =d aii! cooilQ (25)

0 0 0

where the substitution y= t. secO' has been used. Comparison of Eqs. (24)
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S=O

f kvd s'= ,/COS 0'
0

Fig. 2 Schematic diagram showing the geometric
configuration discussed in the text.
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and (2S) shows that

Svcos0,)for ai=0 if i atZ, (26)

i.e., if only the first two terms are used (Eddington-Barbier approxi-

mation) in the power series given in Eq. (24). The physical interpre-

tation of Eq. (26) is the following: the spectral steradiancy at i,. =0,

observed at an angle 0' , for a non-isothermal system is identically

equal to the numerical value of the spectral blackbody steradiancy

B 0(T• =cosO,) at the optical depth •T = coso' or at the geometrical
v V =C80 a

length defined by f k L ds = 1, provided only two terms are used in
0

the power series expansion shown in Eq. (Z4).

It is interesting to consider the possible temperature profiles

for selected spectral line shapes that are consistent with the statements

a

B0+ T= a 1+ cos' f k (s')dslV(• :0 "1 0"1
0

BV B(0)+ [Bv (T. Ir cg)-Bv (0) f k4,(s')ds' (27)

0

and

f k ,(s')do' = 1. (28)

We assume a monotone variation of T and . with a (and thus also of

*w with T) and we impose the boundary condition T=T 0 at v= = = 0.

Differentiation of Eq. (27) with respect to T yields the differential equation

Note that s is measured along the direction 0' shown in Fig. 2.
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(Cosd )k(T) dB 1 2h 2 lA4 exp(h P /kT) (29)
'I Yi k [exp~hiskT)- 1

It is now possible to specify k,(T) for various spectral line profiles

belonging to various assumed atomic or molecular emitters. We may

then integrate Eq. (29) in order to find s as a function of T. Finally,

Eq. (28) may be used to obtain the proper value of s, and hence of T,
0

for which BV(0, 0') = BV(T for f k (s')ds'-l).

In the analysis presented in Eqs. (23) to (29), it has been

assumed that the quantities aI are independent of T. . For an emitting

system with structure, this statement can be true only spectrally, i.e.,

a different value of a1 must be chosen at a different frequency for any

specified temperature dependence on geometrical length. The implications

of this fact may be clarified by referring to the schematic diagram shown

in Fig. 3. The temperature profile must, of course, be independent of

frequency in any physically meaningful problem. However, the physical

location s and the temperature T at which Eq. (28) is satisfied is

strongly dependent on frequency. In the near line wing at the frequency

V0+ & VI, the integral condition of Eq. (28) will be met for small values

of a and T; on the other hand, in the far wings of spectral lines where

V= 0+' V2' much larger values of a, and hence of T, are required

(compare Fig. 3). In other words, the contributions to B,(O, 01)

calculated according to Eq. (26) arise from regions of different

temperature at different locations for different frequencies in such a

way that the far line wings will make relatively larger contributions

since they may be "seen" at greater geometrical depths and.

correspondingly, at higher temperatures.
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t(sT) at AO÷ Ay? for

f kv(s')ds'=l

(s,T) at v +AY for

Sk,,(sl)dsi= I

T - =

Fig. 3. Schematic diagram showing the relation between tempera-
ture T and distance s for a specified angle 0 . The values

of 9 and T required to satisfy Eq. (28) are shown for the

representative frequencies v0 + AyI in the near wing and

v + Av2 in the far wing of a line.
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Since aI may vary with frequency, it will prove to be convenient

to introduce a frequency dependence for aI deliberately in such a way as

to allow a universal representation of a reduced distance variable

(which is a function of v.' ) as a function of T.

A. Isolated Spectral Lines Belonging to Diatomic Emitters with Collision

Broadening

For local thermodynamic equilibrium, we find for diatomic

emitters, to the harmonic -oscillator and rigid-rotator approximation,

the following relation for collision broadening:

2 T 3/ 2

)( [ exp(-E, /kT)] I[(v0 2/ (bo 2T/0)]}T (30)

Here o is the frequency at the center of the emitted spectral line:

Au-i1 is the Einstein coefficient for spontaneous emission for the

transition producing the given spectral line; gu is the statistical weight

of the upper energy level involved in the transition; p/kT° represents the

number of molecules per unit volume at the pressure p and at the

reference temperature To with k denoting the Boltzmann constant;

0- =hcB/kT where B is the appropriate rotational constant for the rigid
0 0

rotator; b is the spectral line semi-half-width at the pressure p and

at the reference temperature T0 and we have assumed that b=bo To/T

at the constant pressure p; uo=hve /kT 0 where V e represents the normal

vibration frequency of the diatomic molecule (harmonic oscillator);

Ei = energy of the lower state above the zero-point energy.
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From Eqs. (29) and (30) we obtain the following differential

equation Iafter approximating v in Eq. (29) by so0:

0* b° T 0 Texp(-hv 0 /kT) exp(E /kT) L (-b o )2
do = -- -- 1 ' - dT

1, aI.exp(.h 0o/kT)] [lexp(-u.O.T)] bo(T /T)

(31)

where 662h2 kIToo

P _ 0 0 (32)

1. The Limiting Case hvo/kT 1- 1, u0To/T <1, (hv o-EA )/kT'4<l

For hv 0 /kT,4'-l, u0 T o/T<l, (hsoj0 -EI)/kT-C< 1, Eq. (31)

becomes, after integration between the limits s=0 at T=T 0 and a, T,

T 9/2 (T 11/2.T 11/2(,

where
2 z (b o/a 1)

Su 0 (h vo0/kT 0) 3T
(34)

,2 4 (b o/a 1 ) v 2(4

13'3 9 IF9/2
u 0(h v /kT) T0

2. The Limiting Case hv 0 /kT>)-, u T /T>>I

For hv 0 /kT >> 1, u0 T /T)> 1, and with. z a(hio-E/ /kT,

Eq. (31) becomes 1

d ,4 bo0  h vh 'EAý -3/2Z-, + v vo2 d. (35)C. OST-- , T, •o k - - T/ • " -.
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Integrating again from s=0 at T=T and z=zoa (hv -E )/kT to a, z,

we find now that
1 3

b hv -~ E 'h\ -Ej
(cosQ')at,4 - 2 T h 4T° T ( ) (36)

a oa -y a -T )1

where
z z

I= - Z. 3 /2e'Zdz, 12 -- f Z.5/2/eZdz. (37)

z z
0 0

In order to evaluate I1 and I., it is convenient to write the identity
z

fz- z dz z 'ne'zdz + z'ne zdz for n = 3 or -, (38)

z OD 00
0

where the second integral appearing on the right-hand side of Eq. (38)

is negligibly small compared to the first for z much larger than z. But

312 d = 2 e 2f -9

where r (1) is the complete gamma function of argumentl and r Z()

1 8
is the incomplete gamma function of z of argument I . Making use of

the notation of Pearson, 8 the preceding expression may be rewritten in

the form
z

e z = 2 - wlI( -0. I (40)

8
With the available tables of the incomplete r -function, which gives

values to seven significant figures, Eq. (40) can only be evaluated for

8 K. Pearson, Tables of the Incomplete F -Function, Cambridge

University Press, Cambridge. 1957.
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z < 9. For z > 9, the integrals may be evaluated either numerically or

else by using a simple approximation procedure.

Integrating by parts twice yields the expression

f - + z.

- e zdz = -ne- +! e dz + f ' (- n "nezdz dz. (41)
z z

For sufficiently large values of z, Eq. (41) reduces to

-n -z
z- ane zdz z e (42)

or, in somewhat cruder approximation,

"az'nedz g z'ne a (43)

Results obtained by using Eqs. (42) and (43), and also by using

Eq. (40) together with tabulated values of the incomplete gamma function. 8

are plotted in Figs. 4a and 4b. These data, together with Eqs. (36). (37)

and (38) yield the desired temperature profile. For h-" /kT << 1, the0

dependence of T on s is easily computed by using Eq. (33).

Reference to Eqs. (33) and (36) shows that the temperature profile

depends on the frequency. At the line center, however, (3 =0. Therefore

s may be computed as a universal function of T for hVo0 /kT 0 << I.

Similarly, for ho 0 /kT 0 >> 1, the second term in Eq. (36) vanishes and

(csO89) s/j4(b /al)To [(hso-Et )/kT ]l/ZJ = 11, which has been plotted

in Figs. 4a and 4b for the special cases c and a = 20: in Figs. 5a to

5c, the corresponding temperature profiles are shown for zo= 20,

To= 3000K.
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obteined by using Psesn's tables? EqL41

\* a Eq.(43)

- / n •312,(1,)

4714

n 5/2,(2) ( 1

N -

" 2 .

Fi.4. The quantity Is- " xd a ucto fz o c 2

-0%

CO° Z 3/2
For comparison also a .dz is plotted, which

Go (l-ez ) 4
determines s(T) for z pf the order of 1 [see Eq. (31)].
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Fig. 4b. The quantity -- . 5  ndz as a function of z for
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10m 9 , z -IC 2 ,0 ( z 0 -=0)
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Fig. Sa. A plot of the first approximation to 11 [see Eq. (43)3 as a

function of T and z (for z. o 0 0 0K ti )
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Fig. 5b. A plot of the first approximation to I 1[see Eq. (43)] as a function

of T and a (for =o = ZO, To = 300 0 K, Et. z 0). The contribution

""o -3/2of the term • zo tq Il is negligibly small.
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Fig. 5c. A plot of the first approximation to I, [see Eq. (43)] as a function

of T and z (for zo = 20, To= 300 K, Et = 0). The contribution

"-z -3/2
of the term e • toI in negligibly small.
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In the line wings, the first terms of Eqs. (33) and (36) become

negligibly small. Hence reduced temperature profiles are again determined

in terms of easily computed quantities or in terms of 12.

3. Determination of Steradiancy B(O,0) for hv 0 /kT 0 >>l, u T /T>>l

If a temperature profile is specified which differs from I, or 12

by at most a constant factor, then the steradiancy B(O, 0) may be calculated

for suitable frequency regions. From Eq. (26) it is apparent that

00

B(0,0) f Bv0 (T _cos,)d , (44)

0

where B° 0 (T.. cos, is the blackbody steradiancy at that location where

T.v/cos0' = 1. According to Eq. (27),

a1 =~iY(T' =COS@ Bo( 0 ] /CoOW (45)

Let us consider the temperature profile (cos0') s=L II, where the

characteristic length LI is a constant. Close to the line center, Eqs.

(36) and (45) lead to the relation

I
00h,,°'-E, 2T c s ' 1 1

B °(T rv =cosm') "B•(Tb)=- b°o.T cosQ, (46)

Next we introduce Eq. (46) into Eq. (44) and integrate from V 0- A vc to

V o+Av, where A -,c is sufficiently small to justify use of the first term
0C c

only in Eq. (36). In this manner we obtain

v0 C h -E I

BT 2 T AV vCo'. (47)

vo Avc
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where B 0 (To) has been neglected.* The contribution of the term in

2
Eq. (38), which has been neglected in Eq. (47), is close to (a -vo/b0).

Let us now consider a temperature profile (cosO') s=L2 12

and investigate only the contribution of the wings in Eq. (36). Then,

proceeding as before,

.32

B (T b T(.(~F cosO' + B O(To). (48)V T =coso' f2 0L2 0

Introducing Eq. (48) into Eq. (44), we obtain the following integral

w Bv(Tt =cosQ a, 4 = 2 kT°T( cosQ

Ao w/bo d

where B 0 (To) has been neglected. The integration limit towards the line

center, jo+ 4V w , must be chosen sufficiently large so that the first term

in Eq. (36) is negligibly small. The upper limit, vo+,Vwu, must be

consistent with the restriction that T. =cosQ1 for all *-' . Clearly the

basic relation given in Eq. (26) can only hold provided T r o T

where T is the highest temperature of the system, i.e., the value ofmax

AV u is determined by the expression
w 

3AVU B (T )L k

[w B max

* 0 0 0

B 0(T ) may be neglected ordinarily unless T '-- constant or cosO' 'x 0.



-33-

Hence Eq. (49) becomes

VJ +AV w 3

o w h +,-E ,
2 B 0(T' )dv = 2.4- b 2 T° T o coso,

'V + V csQ 2 0 T

o w

3

BVO(T max)L 2 kT 0 yj 23

X ;T b cosG'- s- (51)

From Eqs. (47) and (51) we may now determine the scaling
parameters for the steradiancy. Since AV a,,c for a fixed ratio of the

second term (which has been neglected) relative to the first term in

Eq. (36), we find
'V

o c
B0()vc PO (52)

f C T =cosol V it

and
V ,+A u'

a w
2 B (Tv =co ,)d Vf F for Aw <4 A vwu

Vo AV w(S

w 
(53)

The result given in Eq. (53) is identical with the scaling

parameter obtained for the wings of isothermal collision-broadened lines.

This conclusion is consistent with Thomson's approximate considerations.

J. A. L. Thomson, Eighth International Combustion Symposium,
pp. 69-81, Williams & Wilkins Co., Baltimore, 1962.
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B. Isolated Spectral Lines Belonging to Diatomic Emitters with

Doppler Broadening

For Doppler-broadened lines, we find

1 5

2

where the Doppler half width under reference conditions is given by

[ 2kTo n2 1/2
bD'° rn

mc }
From Eqs. (29) and (54) we find that

I 1

SD,o 2 exp(-h vo /kT) exp(Ej-/kT)

a cs'wM , T T!ds 1 T~ 0 J Fl exp(-h id /kJ Ll-exp(-u TO/T)J

0 .d- 

(55)

where . 4 is given by Eq. (32).

1. The Limiting Case hvo/kT<< 1, uoTo/T<< 1, (h o-EA)/kT<< I

Equation (55) becomes now

3 92
d b D o kT 0 -1 exp, (,\n2)r .s- 2 T- dT.d ! I _,T/

(56)

We define the region near the line center by the condition that

the exponential term may be replaced by unity. In this case
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(cosQ')s = O4" (T/To0)1/2-1] (57)

where 1

2 bDT I 1 \TkT

uoa0

When the exponent is sufficiently large, the following approxi-

mation may be used:

VD,o =D, o

(58)

where Ab o(;ý 3 b D. 2I "bD, o T/ f 2

0 000
2. The Limiting Case hv 0/kT >3, 1, uo0To0/T >> I

Integration of Eq. (55) yields the expression
3

- ,o 0

Vf 5/2Z-w dj (59)
L-w

0

where

ho EI ('io- 21 TO

"w =L- 0 _ E, n2n) v 2 T .0/
W=[ 0 . -b D. o)]
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For w > 0, we may proceed as with the collision-broadened line and

the integral w
12 = - w 5 / 2 e wdw (60)

w
0

may be evaluated by using the methods of Section V, A(2).

Having assumed hv /kT° >> I, the frequency region for

w -c 0 occurs far out in the line wings and contributes relatively little

to the total steradiancy.

3. Determination of Steradiancy B(O, 0) for hv /kT >> 1, u T /T>> I,

(h'o-E E)/kT >> I

The frequency dependence of ds/dT given in Eq. (59) does not

permit us to choose aI(V) in such a way that a reduced distance-temperature

profile can be constructed. The difficulty is caused by the occurrence of

a product of frequency- and temperature-dependent terms in the exponent.

Near the line center, we may, however, calculate the radiant

flux since the integral 1I' is determined almost entirely by its upper

limit wmin (corresponding to T=T max) provided that wo-W min ' 2. This

property of the integral has been discussed in Section IV, A(2).

Introducing the additional restrictions

DkTo

and (61)
2
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Eq. (59) becomes
1 3

"Db T 0 )T2!h EL)i (62)
a (coS.I) ý-kT 0 k

where
zit . 5/2

1 r2 z e'dz. z = (hvo-Et)/kT,

jOo

and z is independent of V

The inequalities in Eq. (61) become, for typical fundamental

vibration-rotation bands of diatomic molecules,

• V-o/2

and

2 T

Hence, for large values of Tmax /Too the correct integral is obtained for

a frequency range that may be appreciably larger than bD, o. On the

other hand, for systems with small temperature gradients, we have

obtained a temperature profile that is applicable only very close to the

line center.

For the temperature profile s(cosQ')= L3 12 , we find, after

integrating over the frequency range o"0 - A VD to 4+-, D [compare

Eq. (47)] , that

0 D I

o'tD BVl(T•c. o,)ds..= 2 L3( (L AV

06 D
(63)



-38-

In general, the integral represents only the contributions arising from

a narrow frequency range near the line center. Since it is reasonable

to assume that AV D is proportional to b D,o the radiancy for this

frequency range near the line center is inversely proportional to PoL .

C. Gray Body

With

k1V (T) = = constant,

integration of Eq. (29) leads to the expression

'(cos''): l h 3 • 1 1 (64
a = Y exp(hv/kT)-l -exp-hi'kTo)-Ia c 0c

In certain regions of frequency and temperature, Eq. (64)

reduces to a universal relation between s and T.

1. The Special Case hv,/kT 4 hs/kT << 1

Equation (64) now reduces to
s~cos') =2k 92

-(cosQ') -= . (T-To). (65)
a~kc 0

Hence, for
s(cos0l) £ (T-T 0 ). (66)

Eqs. (44) and (45) lead to

J B (0. Q)dV B 0 B(T )di+ Zk (V 3_3)col,(7
/ V f o V 3 3)(co.Q,) (67)
V1 v-il3c

-tl
and, if T > T0 , then 3' BV(0,0)dvcc (f OC the scaling parameter

is .
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2. The Special Case hu/kTo>> 1, hv/kT<< 1

In Eq. (65), T replaces (T-T 0 ) and the preceding results apply.

3. The Special Case hv/kT > 1, hv/kT >,. 1

In this case there is no s-T curve which is independent of v.

VI. RADIATIVE SCALING PROPERTIES FOR REPPESENTATIVE

TEMPERATURE PROFILES

The integral expression of Sec. I. C. for the spectral

steradiancy B,,, is the formal solution to the linear, first-order

differential equation

dB 0

=TL 0 k 9 (Bv -Bv) (68)
ds

where o = s/L , is the distance along the line of sight, and Lo is a

characteristic length of the system. Equation (68) has been integrated

numerically !y means of a fourth order Runga-Kutta method for

representative temperature profiles. The temperature profiles are

represented by the expressions

T = (Tmx-T )(1- s*-11 m) + To, m=l,2,4 . (69)

The specified temperature profiles are sketched in Fig. 6.

The absorption coefficient k. is given by Eqs. (30) and (54)

for dispersion and Doppler-broadened line contours, respectively. The

spectral and total line steradiancies at s . 2 have been computed for a

typical strong line of the vibration-rotation spectrum of the hydrogen

fluoride molecule. We have chosen the values To= 300 0 K and

Tmax= 3000 0 K. Representative results of the calculation are shown
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in Figs. 7, 8, and 9 for the R3(v-O, Ju3 - v-I, 3=4) line of HF. For this line

in case of dispersion broadening. be= . 13 2 p cm" 1 (p in atmos) whereas for

Doppler-broadening we have used be= 5. 85 x 10-3 cm 1. The reference optical

depth is defined as -rO= (Lo/wbo)f kv, 0 dv (k&,o= absorption coefficient evaluated

at To), BV, s* is the spectral steradiancy at s*= 2, and B., represents the

integrated steradiancy at a= 2 for the entire line.

Reference to Fig. 9 shows that Doppler and dispersion broadening

produce the same total steradiancy Be, for the case under consideration for

large values of iO provided that be, dispersion 0" 2bo, Doppler' i.e. , for

p so 0. 1 atm.

A. Dispersion-Broadened Line

Examination of Fig. 7 shows that the R3 line of HF retains a typical

dispersion contour until -r becomes greater than about 10, when self-reversal

becomes important. Hence 1o 10 may be said to define the upper limit of the

transparent gas regime. From Fig. 9 it is seen that the pressure and length

dependence of the steradiancy for <1 0 <0 is

B5 a 0 L0 , (70)

i. e., it is the same as for an isothermal transparent gas. In general, ,o= 10

corresponds to a small physical length for a strong spectral line. For the R3

line of HF, the value of L0 at To= 10 is about 0. 015 cm.

The center of the line is essentially completely self-absorbed for

T 1 100.* Figure 9 shows that for ° 100

"The condition that B * (P0 zLo)* for T exceeding the value required to make
the line center "black"l may be used to lerive an approximate relation for the
critical minimum value of Tr above which Eq. (71) applies for various tempera-
ture profiles [for details, gee the Ph. D. thesis of B& Thomas, California
Institute of Technology, Pasadena, California, June 1964).
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Fig. 8. The spectral steradiancies B * for rn = 2 for the R3 line

of HF at a = 2 as a function of (v - V )/b for pure Doppler

broadening and various values of the reference optical

depth T0 .
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Be*• cc 2 (71)

which is the same as for the Eddington-Barbier approximation or for

the isothermal case for large optical depths. For a strong line, the

transition to the regime described by Eq. (71) occurs at a small physical

length(-• 0.15 cm for R3 line of HF)

B. Doppler-Broadened Line

The plot in Fig. 8 shows that self-reversal for the Doppler-

broadened line becomes important for T 0 5. However. reference too

Fig. 9 indicates that Eq. (70) remains valid up to ?'0 n: 10 which, at

p=O.l atmos , corresponds to L0 * 0.007 cm for the R3 line of HF. For

larger values of *'o0 however, the Doppler-broadened line does not

approximate the behavior of the dispersion-broadened line, i.e.. B does

not become simply proportional to a power of Lo. Rather, Be. becomes a

weaker and weaker function of C0 as saturation is approached.0

The more complicated behavior of the Doppler-broadened line

compared to the dispersion broadened line is the result of the fact that

the Doppler line half-width increases with temperat-are while the dispersion

line half-width decreases with temperature at constant pressure. Hence,

viewing a Doppler-broadened system at a =2, the radiation emitted from

the higher temperature regions is "seen" at all optical depths since this

radiation is not extensively reabsorbed.


